40 research outputs found

    The capability of heterogeneous γδ T cells in cancer treatment

    Get PDF
    γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αβ T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field

    Systemic Delivery of Oncolytic Viruses: Hopes and Hurdles

    Get PDF
    Despite recent advances in both surgery and chemoradiotherapy, mortality rates for advanced cancer remain high. There is a pressing need for novel therapeutic strategies; one option is systemic oncolytic viral therapy. Intravenous administration affords the opportunity to treat both the primary tumour and any metastatic deposits simultaneously. Data from clinical trials have shown that oncolytic viruses can be systemically delivered safely with limited toxicity but the results are equivocal in terms of efficacy, particularly when delivered with adjuvant chemotherapy. A key reason for this is the rapid clearance of the viruses from the circulation before they reach their targets. This phenomenon is mainly mediated through neutralising antibodies, complement activation, antiviral cytokines, and tissue-resident macrophages, as well as nonspecific uptake by other tissues such as the lung, liver and spleen, and suboptimal viral escape from the vascular compartment. A range of methods have been reported in the literature, which are designed to overcome these hurdles in preclinical models. In this paper, the potential advantages of, and obstacles to, successful systemic delivery of oncolytic viruses are discussed. The next stage of development will be the commencement of clinical trials combining these novel approaches for overcoming the barriers with systemically delivered oncolytic viruses

    Production of Genetically Engineered Golden Syrian Hamsters by Pronuclear Injection of the CRISPR/Cas9 Complex

    Get PDF
    The pronuclear (PN) injection technique was first established in mice to introduce foreign genetic materials into the pronuclei of one-cell stage embryos. The introduced genetic material may integrate into the embryonic genome and generate transgenic animals with foreign genetic information following transfer of the injected embryos to foster mothers. Following the success in mice, PN injection has been applied successfully in many other animal species. Recently, PN injection has been successfully employed to introduce reagents with gene-modifying activities, such as the CRISPR/Cas9 system, to achieve site-specific genetic modifications in several laboratory and farm animal species. In addition to mastering the special set of microinjection skills to produce genetically modified animals by PN injection, researchers must understand the reproduction physiology and behavior of the target species, because each species presents unique challenges. For example, golden Syrian hamster embryos have unique handling requirements in vitro such that PN injection techniques were not possible in this species until recent breakthroughs by our group. With our species-modified PN injection protocol, we have succeeded in producing several gene knockout (KO) and knockin (KI) hamsters, which have been used successfully to model human diseases. Here we describe the PN injection procedure for delivering the CRISPR/Cas9 complex to the zygotes of the hamster, the embryo handling conditions, embryo transfer procedures, and husbandry required to produce genetically modified hamsters

    Targeting of Interferon-Beta to Produce a Specific, Multi-Mechanistic Oncolytic Vaccinia Virus

    Get PDF
    Stephen Thorne and colleagues describe, in a mouse model, an oncolytic vaccinia virus with interferon-dependent cancer selectivity that allows tumor-specific replication; it also expresses the IFN-β gene and hence has efficacy against tumors

    Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy

    Get PDF
    Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed

    Discovery of Digenic Mutation, KCNH2 c.1898A >C and JUP c.916dupA, in a Chinese Family with Long QT Syndrome via Whole-Exome Sequencing

    Get PDF
    Long QT syndrome (LQTS), which is caused by an ion channel–related gene mutation, is a malignant heart disease with a clinical course of a high incidence of ventricular fibrillation and sudden cardiac death in the young. Mutations in KCNH2 (which encodes potassium voltage-gated channel subfamily H member 2) are responsible for LQTS in many patients. Here we report the novel mutation c.1898A>C in KCNH2 in a Chinese family with LQTS through whole-exome sequencing. The c.916dupA mutation in JUP (which encodes junction plakoglobin) is also discovered. Mutations in JUP were found to be associated with arrhythmogenic right ventricular cardiomyopathy. The double mutation in the proband may help explain his severe clinical manifestations, such as sudden cardiac death at an early age. Sequencing for the proband’s family members revealed that the KCNH2 mutation descends from his paternal line, while the mutation in JUP came from his maternal line. The data provided in this study may help expand the spectrum of LQTS-related KCNH2 mutations and add support to the genetic diagnosis and counseling of families affected by malignant arrhythmias

    A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9

    Get PDF
    © 2015 Official journal of the American Society of Gene & Cell Therapy The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) regi on and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (â¼90%) in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.Link_to_subscribed_fulltex

    Genomic Variations in Pancreatic Cancer and Potential Opportunities for Development of New Approaches for Diagnosis and Treatment

    Get PDF
    This research was supported by Nature Sciences Foundation of China (31301007 and 81272525), Pancreatic Cancer Research Fund and The MRC (MR/M015696/1)

    Oncolytic Viruses for Cancer Therapy: Overcoming the Obstacles

    Get PDF
    Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses

    Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer

    No full text
    Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs
    corecore